Perturbed Lie Symmetry and Systems of Non-Linear Diffusion Equations

نویسنده

  • R. J. WILTSHIRE
چکیده

The method of one parameter, point symmetric, approximate Lie group invariants is applied to the problem of determining solutions of systems of pure one-dimensional, diffusion equations. The equations are taken to be non-linear in the dependent variables but otherwise homogeneous. Moreover, the matrix of diffusion coefficients is taken to differ from a constant matrix by a linear perturbation with respect to an infinitesimal parameter. The conditions for approximate Lie invariance are developed and are applied to the coupled system. The corresponding prolongation operator is derived and it is shown that this places a power law and logarithmic constraints on the nature of the perturbed diffusion matrix. The method is used to derive an approximate solution of the perturbed diffusion equation corresponding to impulsive boundary conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

Systems of Reaction Diffusion Equations and their Symmetry Properties

A constructive algorithm is proposed for the investigation of symmetries of partial differential equations. The algorithm is used to present classical Lie symmetries of systems of two non-linear reaction diffusion equations.

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002